Sunday 10 April 2011

CONDENSER DESIGN


CALCULATE HEAT DUTY – Q
Shell Side: (cold)                                             Tube Side: (hot)

Water and MEG                                                     Water
Inlet temperature of the process (condensing)stream
= T1 =T =161.6 oF =72 oC
Outlet temperature of the process stream
= T1 =T=161.6 oF =72 oC
Inlet temperature of the water                = t1  = 77 oF=25 oC
Outlet temperature of the water = t2  = 113oF=45 oC
Mass flow rate of the process stream = m  = 33322 lb/hr= 15128 kg/hr
 of Process Stream    = 1001 B.T.U / lb = 2327.65553 K J / Kg
Q = m * = 15128 * 2327.65553 = 3.52127 *10KJ/ hr
                  = 1001 * 33322=3.337 *107Btu /hr
Cp of cooling water=1 B.T.U/ lb. hr = 4.187 KJ/kg k
Mass flow rate of cooling water
 = (3.52127 *107 ) /(4.18738 * (45-25))       m= 420310.55 Kg /hr
  =(3.337*107)/(1*(113-77))         m =926944.44 lb / hr
LMTD = ((161.6-77)-(161.6-113)) / Ln ((161.6-77)/(161.6-113))
LMTD = 64.9  oF
LMTD = ((72-25)-(72-45)) / Ln ((72-25)/(72-45))
 LMTD =36 oC
Caloric Temperature
Tc and tc              Tc=T=161.6 oF =72 oC
tc=(t1+t2)/2           t1=77 oF  =  25 oC                  t2 =113oF=45 oC
tc=(25+45)/2= 35 oC
Overall Design heat transfer Coefficient
Assumed  Ud=  513 BTU/hr/sq.feet/F = 2914.4597W /m2 K

ESTIMATED AREA
=Q/(Ud*LMTD)
= 3.52127 *107 / ( 2914.459 * 36 )*1000 / 3600
A = 93.2 m2

TUBE SIDE CALCULATIONS
Tubes: ¾ in. dia  . 14 BWG
Effective Length of the tubes L=5m
O.D of the tubes=0.75 in  = 0.0625   ft   = 0.01905 m
I.D of the tubes =0.584 in = 0.04867 ft = 0.01484 m

SURFACE AREA PER LINEAR FT OF TUBE
 =0.1963 ft2/ft= 2.3556 in2/in =0.0598m2/m
Surface area =at =  5*0.0598 = 0.292 m2
 = 3.1408 ft2
NO OF TUBES
nt=A/at =93.2/0.292 =  318.752
Density of the water ρ=60.2 lb/ft3=964 kg / m3

VOLUMETRIC FLOW RATE OF WATER
V=w/ ρ    V= 420310.55  /(964*3600)   V=0.121m3/sec

VELOCITY OF WATER
  v = 4  ft/sec =1.2 m /sec

TOTAL CROSS SECTIONAL AREA
Ax=V/v     Ax  =0.121/1.2      Ax = 0.10083 m2
Cross Sectional Area of a tube   x=0.546 in2 =0.00035226 m
TUBES PER PASS
 tp=Ax/x                 tp = 0.10083 / 0.00035226 = 286.2
No of tube pass
np=nt / tp                 np= 318.752/286.2 = 1.1137
Corrected  number of tube pass
 np =1

SHELL AND TUBE SPECIFICATION
Corrected value of number of tubes
Correct nt=361
Corresponding Shell Dia
 D=21.25 in =0.53975 m
Corrected A
A=nt*a t= 361*0.292     A  = 105.412 m2

CORRECTED Ud 
Ud   = Q/(Acor*LMTD)
Ud  = 3.52127 *107 /(105.412*36)*1000/36000
       =  2570.8   W/m2 K=452.96 BTU/ hr ft2 oF

TUBE   CROSS SECTIONAL AREA
ac=0.268 in2=0.0001729 m2
Total Cross sectional Area
Act=at*nt /np
At=0.0001729*361 / 1    At=0.0624 m2

MASS VELOCITY
Gt=w/At     Gt=420310.55 /0.0624    Gt=6733810.058  kg/ hr m2

VELOCITY
v=Gt/Rhoc
v=6733810.058 /(964*3600)
v=1.940 m/sec  (assumption is true)

CALORIC TEMPERATURE
tc= 35 oC

INSIDE TUBE HEAT TRANSFER COEFFICIENT BASED ON THE OUTER DIAMETER                
hi=   1440 BTU/hr/sq.feet/F =8180.928   W/m2 K          
hio  = hi*id/OD
hio  =1440*0.584 / 0.75
hio  =1121.3  BTU/hr/sq.feet/F  = 6370.32 W/m2 K          

SHELL SIDE CALCULATIONS
Shell Diameter= 21.25 in = 0.53975 m
Pitch =Pt=15/16 in =0.0238 m
B=ID=0.5397 m
Number of baffles  = nb=5/0.5397 =9.26

CORRECTED BAFFLE NUMBER
 Nb =10   O.D of the tubes=   0.75 in  =  0.0625  ft   = 0.01905 m
 I.D of the tubes =   0.584 in =0.04866 ft   = 0.0148 m   
       
CLEARANCE   
C=pt-OD=0.0238-0.01905  = 0.00475 m= 0.1875 in
B=L/nb*12
B= 5/10= 0.5 m =19.68 in

SHELL CROSS SECTIONAL AREA
as=ID*c*B/(pt)
as = 0.53975 * 0.00475*0.625/(0.0238)
as=0.0657968 m=0.7083 ft2
Mass Flow rate =wf= 15128 kg/hr

MASS VELOCITY
Gs= wf / as;
Gs = 15128 /0.0657968=229919.996
Gs =229919.996 kg/m2hr
at= 0.292m2  np= 1

CONDENSING LOAD
Gl=w/(L*nt2/3)
Gl=15128/(5*3612/3)
Gl=59 kg / m hr =39 lb / hr ft
Dirt Factor
Rd= 0.0005/5.6812    = 0.000088 m2 K/W
Overall Clean Coefficient    Uc=Ud/(1-Ud*Rd)     Uc=Ud/(1-Ud*Rd)
Uc=452.96 /(1-452.96 *0.0005)
Uc=585 BTU/hr/sq.feet/F   = 3323.5 W/m2 K
hio = 1121.3  BTU/hr/sq.feet/F=  6770.329 W/m2 K   = 22933.186 KJ /m2 hr
ho=Uc*hio/(hio-Uc)  ho= 1225.7 BTU/hr/sq.feet/F
ho =6963.44 W/m2 K

WALL TEMPERATURE
 tw=tc+hio/(hio+ho)*(Tc-tc)
tw=35+24195.06 /(24195.06 +3852.72)*(72-35)     tw = 66
tw = 54.3 oC= 129.7818 oF    tf=(Tc+tw)/2
tf = (72 + 54.3)/2 = 63.15 oC= 145 .6909 oC
kf at  tf' = 0.3860 Btu ft / hr /sq.ft / F
sg at tf= 0.9750
μf at tf=0.45 Cp       ho=1800 Btu/hr ft2 oF               
ho =  10119.24 W/m2 K

OVER ALL CLEAN COEFFICIENT
Uc=hio*ho/(hio+ho) =326 Btu / hr ft  F =1852.073863 W/m2 K

OVER ALL DESING COEFFICIENT
Ud=Uc/(1+Uc*Rd) = 280 Btu ft / hr ft  F= 1590.73 W/m2 K
 =5723 KJ /hr m2

PRESSURE DROP (SHELL SIDE)
At   T = 72 oC
map =0.00042 kg /m sec =1.512 kg / m hr
De = 0.01397 m   
Res= DeGs/m= 0.01397 ´ 229919.996 /0.00042 *3600
                    = 2124.32
For   Res  =  2124.32
Friction factor for shell side f = 0.4032 ft2/ ft2
No. of crosses, N + 1  = 11

SHELL SIDE PRESSURE DROP
                   f Gs 2 D(N + 1)
Δ Ps =  ½(                                     )
                  2.54x 1011  DS Fs
Re.s       = 2124.32    =0.0028                                      
De           = 0.01396m.        s       = 0.002169
Gs           =229919.996 kg / hr m2

                 0.028*(229919.996) 2 x0.53975 x 11
Δ Ps =                                                                  
                 2  x 2.54 x 1011 x 0.01396x 0.002169
      = 571.kg/m2=0.812 psi

PRESSURE DROP (TUBE SIDE)
Reynolds No.
Ret       = DG/m  = 0.014846733810/(0.000543600 )  = 50469.57
for Ret = 50469.57
Friction factor for tube side f = 0.02448

            = 
            = 1527 kg / m2 =2.17psi
    = (4´n / s)´(v2/2g) =
     =4*1/0.964*0.21=0.87  psi
     =4*1/0.964*147.79 =613.2kg / m2
 =2140 kg /m2     = 3.041 psi

No comments:

Post a Comment